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S U M M A R Y  
An analysis is presented of the error in numerical approximations to a system of elliptic equations describing the 
steady-state distribution of mobile carriers in a semiconductor device. Although this system has been extensively 
studied by finite difference methods, the accuracy of the numerical methods employed has not been previously estab- 
lished. Computation schemes are presented for which suitable error estimates are obtained, without assuming an 
unreasonably small mesh size. In addition, for the one-dimensional problem, the effect of the inexact solution of the 
discrete equations is estimated. 

1. Introduction 

In this paper we are concerned with the accuracy of numerical solutions of a system of non- 
linear elliptic equations describing steady-state carrier distributions in a semiconductor device. 
In an open bounded connected region,D c R", we consider the system 

tcAO+N+pe-q'-~e ~ = 0,  (1.1) 

v. o,  (1.2) 

V.(e-~ = 0, (1.3) 

for the three real scalar functions ~, ~, p of x = (xl, ..., x.). In (1.1) x is a positive constant and 
N is a given smooth function of x, defined in D. We assume boundary conditions of the form 

((x) = p(x)= 1, O(x)specified, x~D1,  (1.4a) 

~(x)= b, p(x)= 1/b, ~(x) specified, xE(~D2, 0< b< 1, (1.4b) 

v ' V r  xE~D3, (1.4c) 

where the boundary ~D is the union of the three segments 0D1, OD2, 0D3, and where v is the 
outward unit vector normal to the boundary. 

The variables in the system (1.1-1.3) admit the following physical interpretation [13]: 
~, ~ e ~, p e -~ are the electrostatic potential, electron density, and hole density, respectively; 
K is the dielectric constant, N the ionized impurity concentration, and the quantities e~ e-OVp 
are proportional to the electron and hole current densities, respectively. In obtaining eqs. 
(1.1-1.3) we are assuming the applicability of Boltzmann statistics and constant carrier 
mobilities, and are neglecting recombination of mobile carriers. A system of units is adopted in 
which the Boltzmann voltage, the electronic charge, and the intrinsic carrier density have 
magnitude unity. 

Numerous numerical investigations of systems of equations of this form have been reported 
[2, 4, 8, 9, 15, 16], based on finite difference approximations. Many of these investigations do 
not include computations of the current characteristics of the devices considered. 

In this paper we derive estimates of the errors in such numerical approximations of the solution 
of the system (1.1-1.4), and in particular the errors in the computed values of the device currents, 
which are of particular physical interest. 

Our method of analysis is a variation of the Rayleigh-Ritz-Galerkin method, as applied to 
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nonlinear boundary value problems [3]. We first obtain the desired error estimates in terms ol 
norms of the right sides of (1.1-1.3), when the solution functions ~, {, p, are replaced in these 
equations by sufficiently smooth approximating functions. Schemes for constructing suitable 
approximations from finite-dimensional function sets are then presented. This approach 
allows the order of magnitude of the errors to be estimated, even when the mesh is of moderate 
size. For the one-dimensional problem, a particularly simple finite-element scheme can be used, 
even if the discrete equations are not solved to high accuracy. The two-dimensional problem 
is much more complicated, and we simply show how suitable numerical schemes can be 
constructed. 

The present results depend on an existence-uniqueness theory for the system (1.1-1.4) which 
appeared in [ i i ] .  

We note that the system (1.1-1.4) is invariant under the interchange ~--+-~,  N--+-N, 
~-~p, p ~ .  For this reason, it is sufficient to write out the analysis only for the electron-related 
terms, as the corresponding terms for holes are obtainable by the above interchange. 

Except where noted otherwise, our estimates can be made computible and a priori. However, 
in this form the estimates are so crude as to be useless from a practical viewpoint. For this 
reason, we denote several multiplicative constants by C, with the understanding that such 
constants will be determined empirically as required. 

2. Assumptions, definitions and notation 

We denote by qJ, ~, p, the exact solution functions satisfying (1.1-1.4), and by ~', ~', p' the 
computed numerical approximations, which are assumed to satisfy the boundary conditions 
(1.4). We set 

ra = KAO'+N+p'e-O'-~'e ~' (2.1a) 

r2 =V'(eO'V{ ') (2.1b) 

r3 = V ' ( e - 6 ' V p  ') (2.1c) 

where the r~ are, in general, distributions of x in D. We also define the functions ~,/5 to be the 
solutions of 

V (e ~ V~) = 0,  x e O, (2.2a) 

V' (e-O' V/i) = 0, xe  D, (2.2b) 

respectively, also satisfying the prescribed boundary conditions for ~ and p. 
The electron current J is defined as 

J= feoleg'v'V~dx = - f~o2e~v'V~dx ; 

we also set 

J= f ~  e~"v'V~dx=- f~o2 ee"v'V~dx 

and choose for the numerical approximation, 

J'=(l-b)-a (fOp eq"v.V~'dx+b feo2e4"v.V~'dx). 

We use the following scalar product and norm notation: 

(u, v) = u ( x ) v ( x ) d x ,  Ilutl = S u p  tu(x) l  , 
x~D 

; Ilull. . . , ,  = 
I~[ =.,n 
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It is assumed that the boundary segments 8D1, ~D 2 are sufficiently large that the integrals 
(2.3-2.5) are defined, and an estimate of the form 

{(ult2 < CHul[1,2 (2.6) 

holds for all functions equal to zero on 3D 1 ~ 3/)2. From [11] we will infer the existence of 
uniform bounds on q, ~', and the estimate 

II~b-~b'lll,2 <_- CIl~:A~b'+N+~e-O'-(e~'ll2 (2.7) 

which is essential in the following analysis. We note that uniform bounds on (, p are immediate 
from (1.2, 1.3) and the maximum principle; in the following, we also assume (', p' uniformly 
bounded. 

3. Basic analysis 

In this section we relate norms of the errors in the approximating functions ~', ~', p' to the 
magnitude of the error terms rl, rz, r3 in (2.1). Our results are contained in the following 
theorem. 

Theorem 1. Suppose the functions t~', ~', p' satisfy the boundary conditions (1.4), and in (2.1), 
r> r2, r 3 e Lz(D). Then there exists a constant C depending on D, }IN}[, b, and the boundary data 
for ~ such that 

.at - , t E = l l t ~ ' - ~ l l t , 2  [ I~-~I I1 ,2q- I lp t -pI I1 ,2- t - I J ' - J Iq- IJ , - J , I  

C(llr1112-}- Ir2112 q- [Ir3112 ) (3.1) 
where J, is the expression for the hole current, analogous to (2.3), and 3, is the computed approxim- 
ation to J,, analogous to (2.5). 

Proof: We write out the proof only for the electron terms, as noted above. From the triangle 
inequality, we have 

lift'-flit,,2 =< i l f f ' - ( l l , ,2+l l(-gl l , ,z  (3.2) 

I f - J [  ~ I a ' - J l +  t 3 - a l  . (3.3) 

Integrating by parts, and using (2.1-2.5) we obtain 

(e% [V~l 2) = (1 - b)J  (3.4) 

(e 0, [V(I 2) = ( l - b ) J  (3.5) 

(e ~~ IV~'] 2) = (1 - b ) d ' - ( ( ' ,  r2). (3.6) 

For some constant c, since ~' is assumed uniformly bounded, we have also 

c I [ ( ' -  ~lhZ z =< (e ~', [V(r z) 

= (e~', I v ~ ' l ~ ) - ( e  *', Iv~l ~ ) 

= (~_~,, r2 ) (3.7a) 

= (I - b ) ( J ' - J ) - ( ~ ' ,  r2) (3.7b) 

so that 

(1 - b ) ( J ' - 3 )  = r r2) 

Next suppose J > J, then 

or I J ' - J l __  < CIIr21ti. (3.8) 
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( 1 - b ) ( J - J )  = (e ~, [V([2)-(e 0', [V~[ 2) 

= (e~, fv41~)-(e 0, I v ( c - @ : ) - ( e  o', lYe?) 
=< (e~'-e ~', [V(I 2) = (e ~ 1 7 6  1, e~ 2) 

= - ( ( e  r V( '  V(e ~ ' -0 ' -  I)) 

= -(~e0, V~. V(O-O' ) )  

< c " ' ( J )  - ' = I1(111,=11~-q, 111,2 < c ~11~, q,%,2 5 c I I 0 - 0  t11,2 

since 0' is assumed uniformly bounded, and therefore J is from (2.2a, 3.4). 
Similarly for J <  J, we obtain 

( 1 - b ) ( J - J )  = (e ~ IVr e, IV(I 2) 

= (e% [V~12)-(e ~'', IV ( ( - ( )12)- (e  ~ IV(I 2) 
< (eO'-e 0, [V(I 2) 

_-< C I I q ' - q " l l l , z  

by reasoning entirely analogous to that used to obtain (3.9). In addition 

c 11r < (e ~', IV((-()[  2) = ( r  V' (e~ V()) 

= (~-~,  V-(e~176 = r  e~'V(' v ( 0 ' - 0 ) )  

=< cll(-(t l~l l  r =< cll~-(Ih,~ 1r 

(3.9) 

(3.10) 

where we have assumed the boundary 8D sufficiently regular that qlV([[ exists [11]. Thus 

I1( - (111,2 < C [10'-0111,2 (3.11) 

Collecting these results, we have from (3.7a, 3.8, 3.9, 3.10, 3.11) 

IIC-('111,2 < C ( ( - G  rz)+CllO-O'lh,2 (3.12) 
I J -  J'l < C llr2 lll + C ll O-O' lh ,z  (3.13) 

and similar expressions for the hole terms. To estimate II qJ-q/Ih,2, we use (2.7) and the triangle 
inequality to obtain 

11~'-@111,2 < C(llrlll2+[[('-(II2+llp'-pll2) 
L , t 1 

< C([[r1112+(~-(', r2) ~ + ( p - p ,  r3)'). (3.14) 
From (3.12, 3.13, 3.14) and the corresponding estimates for the hole terms, we have the left 

side of (3.1), donated by E, estimated as follows' 
D [ -  " t E < C(l[rlll2+llr21h+llr3111 ( ( - i f ,  r2)~+(t~-p ', r3)�89 �9 (3.15) 

Finally, we estimate the scalar products in (3.15) using the Schwarz inequality, 

' r < (~- -~ '  2 ) =  ~--~[2[Ir21[2 

__< C I1( - ( ' lh ,2  IIr21h 

< C(~- ( ' ,  r2) ~ Iir2[12 (3.16) 
using (3.7a). Then (3.!6) becomes 

(~--( ' ,  r2)=< C[[r2[[ 2 ; (3.17) 

using (3.17) and the corresponding estimate for (tS-p', r3) in (3.15), the result (3.1) follows. This 
concludes the proof of Theorem 1. 

Corollary: For the case n = l  (D an interval, OD1, 8D2 the end points) the right side of(3.1) 
may be replaced by 

C ([Irll]2 + Ilrz ILl + [Ir3111) �9 (3.18) 
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Proof: Instead of (3.16), we use in (3.15) the estimate 

(~-g ' ,  re)< II~-g'll Ilr2lh 

< C Ilg-g'll~,2 Ilrelh 

<= C(~-~', r2)~ljr21!, 
so that 

(4- :', c IIr ll  
from which the result r immediately. 

(3.19) 

4. Discretization error in one-dimensional problems 

The use of suitable finite-element schemes, in the construction of the approximating functions 
~', ~', p', allows the terms of the form ][rillp in (3.1) or (3.18) to be readily estimated. In this 
section we carry out such estimates for the one-dimensional problem, in which case a partic- 
ularly simple numerical scheme can be used. In addition, our estimates allow for- the generally 
inexact solution of the discrete equations, and allow the asymptotic order of magnitude of the 
errors to be achieved, using a rather coarse mesh. Such restrictions on practical computations 
are commonly encountered in this type of problem. 

We set D = (0, L), with 0D 1, 0D2 the respective endpoints, L = Mh, and x~, = mh, m = O, 1,..., M. 
The functions ~', ~', and p' are specified by a set of parameters ~,,, ~,~, Pro, m = 0, 1, ..., M. 
For m = 0  and m =M,  the parameters ~m, ~m, P,, are assigned their respective boundary values; 
for other values of m, they are obtained from the difference equations presented below. The 
functions 0', (', P' are defined as follows, in each interval Xm < X < Xm + 1 : 

0' (X) = ~ (X) + 7 (X) (4.1a) 

Am+lO = m + 6 y(x) h (4.1c) 

d (e*' < ' )  
dx dxx = O, xe(Xm, X,,+,) ; ~'(Xm) = ~,n, ~'(Xm+~)= ~,,+~ (4.2) 

d (e-*' dp'  
d~ dxJ = 0 '  Xe(Xm, Xm+I); p(Xm)=pm, p'(Xm+x)=pm+l (4.3) 

where in (4.1c) we use the abbreviation 

A ~ 0 = 0 m + l - 2 0 , , + 0 , , - 1 ,  m = 1 , 2  . . . . .  M - l ;  A , , 0 = 0 ,  m = 0 ,  M .  (4.4) 

The function 0' as given in (4.1) is also obtained by cubic spline interpolation [1] between 
the point values 

O'(Xm)=O~++A~O=+(O,_~+40m+Om+~), m = l ,  2 . . . . .  M - l ;  

0' (0) = 00, 0'(L)= 0,,. (4.5) 
The parameters 0,,, (m, Pm are obtained by the approximate solution of the system 

R'~ = R~' = R~' = 0 ,  m --- 1, 2 . . . . .  M -  1, (4.6) 

where 

R~ =~-A-~--+ N(x,.)+p,.exp ( - O " - l  +4~-m+O"+lt - ~mexp(!P"-l+4~m+O"+~-), 

(4.7) 
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h2R"d ~ ~e_Om_e_O,,. j ( ~ m + l - ~ )  - \ e ~ q , ~ j  

h2 R~ ( O,,+ l--Om'~ f lPm--~b,,- l ~ , , = ; 

(4.8) 

(4.9) 

the factors in parentheses in (4.8, 4.9) are defined continuously at qJm=~m+ 1. The system (4.6) 
possesses a solution [11]; however, in the following we allow for nonzero values of the RT'. 
We note that if R] '=0  for some m, the approximating functions actually satisfy eq. (1.1) at the 
point x,.. Eqs. (1:2, 1.3) are satisfied by these approximating functions except at the interior 
mesh points. 

The electron current J' is readily computed from (2.5, 4.1, 4.2), and is given by 

J' = (1-b)-  ~ I(1-~l) /j'~o e-~ d x - b  (~M_ l - b )  /f~_h e-~"~) dxl . (4.10) 

In the following, it is convenient to employ the following notation:  

u(x)=~'(x)e r v(x)=p'(x)e -~'(~, w(x)=N(x)+v(x)-u(x) ,  O<-x<-L ; (4.11) 

O(x) = v(x,.+~) + - - ~ - -  v(x,,) x, ,<x<x,,+~,m=O, 1 , . . . , M - I  (4.12) 

\ h /N(x,.+O+ 

In addition, it follows from (4.1) that 

/ x -x , , \A , ,+~p  (x h - X )  A,,g, ~p',(x)= ~ = ) - ~ +  "+ h2 , Xm~_X~XM+I, m = 0 , 1  . . . . .  M - 1 .  
(4.13) 

A first integral of (4.2) gives 

/ f  xm + I ~'~(x)=a=e-~'t~),xm<x<x~+l; arn---~-(~rn+l--~m) e-O'(X)dx, 
Xm 

m = 0 ,  1,, . . ,  M - 1  ; (4.14) 
we also set 

l f  Xr.~ + 1 bm = ((,,+ I -  ~ )  e-~(~)dx = (~,,+ l -~ , , ) (~O, ,+l -O, , ) / [h(e-q '~-e- r  
na 

m = 0 ,  1, . . : , M - 1 .  (4.15) 

Our estimates of the discretization error associated with this scheme are contained in the 
following two lemmas: 

Lemma 1 : In the above difference scheme, suppose G,, (,,, Pm are bounded, independently of m 
and h; then there exists a constant C, independent of h, such that 

I[rl[{2~ h ~ (R~) 2 q - [ I g - N l l 2 + C h  2 + Sup IR"~[+h ~ ([R~'[+IRTI) 
m = l  l~m<-M-I m = l  

+ h 2 [R'~ \ , ,=1 (IRT[+[R"dJ+IRTI) " (4.16) 

Proof: We estimate }]r~]12 from (2.1a), using the triangle inequality and (4.7), (4.12), (4.13), 
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IIr~l12 = [[x~;x+N+v-ul[2 

[[ lc0xx + N + 0 -a l l2  + I IN--~[ [ /+  I lv-  0l]2 + [lu -a[[2 

< h ~, (R + I t N - - ~ l h + l l v - ~ l h + l l u - a l h .  
m = l  

From (4.12) it follows that in any interval x,~< x <  xm+ 1, 

u(x ) - -a (x )=-  m+ --x (y-x~,)ux~(y)dy- (x,~+l-y)uxx(y)dy ; 
Xm X 

(4.17) 

from (4.2, 4.11, 4.14), we have for xm< x <  x,,+l 

u =  = + eO' G). = G + + 

= a,, O'~ + u (O'x~ + (O~,)z). (4.18) 

In (4.18) the boundedness ofu (independently of h) follows from (4.1, 4.2) and the hypotheses 
on the parameters G,,  ~,,. From (4.13, 4.7) we have 

14/~d < C(I+IR"(I+[R7+~I), (4.19) 

so that 

I~';I < C 17Fh IR �9 (4.20) 
r n = i  

From (4.1, 4.14, 4.15)it follows that [am[ < CIb,[; we rewrite (4.8)in the form 

hR~ = b,,-b, ,_ x (4.21) 

and note that 
M - 1  xrn+ ~, 

~ "  bm [ e -~(~) dx = b - 1 ,  (4.22) 
m=O= ,J Xm 

using the boundary conditions (1.4) for (. From (4.21, 4.22) and the boundedness of ~, it 
follows that 

[bml < C l + h  ~ IR �9 (4.23) 
i = l  

Combining (4.18, 4.19, 4.20, 4.23) we have 

lUxx(X)[<C + Sup IRT[+h ~ [R'~[+h 2 IR ' I ' I  (IR'I'I+IRTI 
l<_rn<_M-1 m = l  1 1 

(4.24) 
for xe(xj ,  x~+l), j = 0 ,  1 . . . . .  M - 1 .  Then from (4.17) we obtain 

[[u-filiNG 1 +  Sup IRTl+h ~ IR~'[+h 2 JR (IR]'I+IR~'[ ; 
l<=m<__M-1 m = l  m = l  1 

(4.25) 
by analogous methods, a similar estimate is obtained for J l v - ~  [[, which establishes the result 
(4.16). 

Lemma 2: 
of h such that 

[Irzf[1 < C h Ie~'[ + 
1 

Under the same hypotheses as for lemma 1, there exists a constant C independent 

l + h  ~ Ie~'l I & + I ~ ' - A , 4 ' I  
m = 1 n 0 

(e - 1) ~ 1) + Z +1~,,01 (e~la,,r _ (4.26) 
m = l  
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Proof: From (4.14) we have 
M-1 

IIr21h = ~ lam-a,~-ll 
m = l  

it follows from (4.14, 4.15) that 

~+ ~ -~ dx e -~ dx am = b m e 
x m  l , J X m  

so that 

M. S. Mock 

(4.27) 

am--am-1 = (bin-bin-i) e-~'dx e-~ 
x m -  1 X~,a- 1 

acre X r ~ -  1 

o 14 ,t 
X m  X m -  1 

In (4.28) we use (4.21) and the boundedness of 7 (x) to estimate the first term, and (4.23) to 
estimate the factor bm in the second term. Again using the boundedness of 7, and substituting 
s = (x-  Xm)/h, t = (y-  Xm- ,)/h, it follows that the ratio of the double integrals in (4.28) is estimat- 
ed by 

y f, C e-~O~*~-*m)Se-C~m-*m ~)t(e-~X)-e-~(Y))dsdt 
o o 

1 1 S 3 (1__S)3 Aml) ) 
=Cfo j0exp(--�89 t)) Iexp(--~-Am+lff 6 

- exp -~-AmO 6 

=C flo floeXp ( - � 8 9  a) [exp (-Am+106 s3) 

+C fao floeXp (-�89 - ~ - ( s - t ) - ~ - t  a) [exp (-  ~ ( 1 - s )  3) 

- exp ( Am-lff6 (l-t)3)] dsdt" (4.29) 

The two expressions in (4.29) are estimated similarly; the first term can be rewritten 

C flo fl exp (--{(~'m+ 1-- ~'m_ l) (s + t) -- ~ (s--t--�89 

[exp ( -  Am61~s3) - exp ( -  ~ - s ~ l d s d t  

+C flo flo exp (--�89 ~-(S--t--~(1--S)a)) 

[exp(-- ~ s3) -- exp (-- ~-~ t3)]dsdt. (4.30) 

Journal of Engineering Math., Vol. 7 (1973) 193-205 



Computation of semiconductor device current characteristics 201 

The first term in (4.30) is < CI Am+ 1 ~l--Z~rnl~ll, using the mean value theorem and the bounded- 
ness of the discrete variables. To estimate the second term, we note that 

fl~ i10 exp ( - � 89  ( -  A ~ s 3 ) -  exp ( - A ~ t 3 ) l  dsdt=O 

by symmetry ; thus the second term is equal to 

C flo f~o exp (-- �89 (-- ~-~-(s--t--�89 - 11 

Iexp ( - - ~ ( s 3 - - t 3 ) )  - l l e x p  (-A~6~---t3) dsdt 

< C (exp (~1A,,~01 ) -  1)(exp (-~ I A,,0 [ ) -  1) (4.31} 

since for 0 < s, t <__ 1, Is - t - �89 (1 - s) 3 ] < 4 and I s3 - t31 < 1. The same estimate is readily obtained 
for the second term in (4.29), which establishes (4.26). 

Based on the estimates (4.16, 4.26), and a similar estimate for I[ra II 1, we obtain the following : 

or may 

(c) 
<d) 

(e) 
then 

Theorem 2: Suppose that h is chosen sufficiently small, and the difference equations (4.6-4.9) 
are solved to sufficient accuracy, that the followin9 are valid, with constants independent of h: 

(a) IIN-Nll2 = O(hz) ; 
M-2 

(b) ~ [Wm+~-w,, [ is bounded (dependin9 on the particular problem, this bound may 
m = l  

not be known a priori) ; 
h2w(Xm)<=l, r e = l ,  2 . . . .  , M - 1  ; 

0,., ~m, P,. are bounded independently of m and h ; 

(R~) 2 , h ~ ([R~'[+IR~'I) = O(h 2) ; 
m = l  r l l = l  

I lq , -0 ' i l l ,z+ [IC-r [[P-P'lll,z+ IJ-J ' l  + [ J , - J . {  = O(h2) �9 (4.32) 

Proof: Using hypotheses (a, d, e) in lemma 1, we have [[rl[Iz=O(h 2) from (4.16). From 
(4.7, 4.11) we have 

A,~ = Kh2 R'~-~ch2w(x,,) ; (4.33) 

using (4.33) and hypotheses (c, e) in lemma 2 give 

[[r2[[1 ~ C h2-{-h 2 E ]w(xm+l)--W(Xm) I q- E (Am 
m = l  r n = l  

M - 2  

= O(h2)+Ch 2 ~ IW(Xm+I)--W(Xm)I (4.34) 
m = l  

again using (4.33). From hypothesis (b), the sum in (4.34) is bounded independently of h, so 
)1r2111 =O(h2). A similar estimate holds for IIr3II1, and establishes the result (4.32) from (3.1). 
This concludes the proof of theorem 2. 

We note that under the hypotheses of theorem 2, the order of magnitude of the error in the 
computed current J' is not changed if eq. (4.10) is replaced by the simpler expression 

j ' =  (-bo +bbM_l)/(1-b).  (4.35) 

By using more elaborate discrete equations, one may obtain a numerical scheme which is 
superior to the one described above, in the sense that hypotheses (b, c) of theorem 2 may be 
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dropped. From (4.1, 4.14) it follows that the a,, can be computed to arbitrary accuracy, in 
terms of the discrete variables. The conclusion of theorem 2 depends only on the boundedness 
of the am, as applied to (4.18), and an estimate of the form 

M - 1  

]am--am_ll = O(h 2) (4.36) 
m = l  

to replace lemma 2. 

5. Two-dimensional problems 

In this section we are concerned with obtaining estimates of the error terms in (3.1) for a two- 
dimensional domain D. The methods of Section 4 unfortunately cannot be generalized to 
higher dimensional domains. 

For simplicity, we specialize the domain D to be a rectangle, with boundary segments 
oriented as shown in fig. 1. As in the preceding analysis, we consider the case where the relative 
variations in e -+~', (', p' between mesh points are large, but we assume that the relative varia- 
tions in q~, (e  ~ pe  -~, e~V(, e -~  are O(h). As the detailed analysis for two-dimensional 
problems is quite lengthy, compared with that given above for the one-dimensional problem, 
we simply show here how suitable computation schemes may be constructed. As in the preced- 
ing sections, we carry out the analysis only for the electron terms. 

The essential problem is the solution of (2.1b) for (' in terms of if', in such a manner that 
]]r211 / as determined from (2.1b) can be made small. The following approach is proposed: 
instead of trying to approximate (1.2) directly, we describe the current density components by 
a "stream function" denoted by 0, defined in D and satisfying the boundary conditions shown 
infig. 1, 

(e~ y) = JOy(x, y), (e~'~r)(x, y ) =  -JOx(x, y), (x, y)~D (5.1) 

where J is the total electron current, given in (2.3). From (1.4, 5.1) it is clear that 0, as a function 
of (x, y), satisfies the equation 

V (e-~'V0)= e - ~ ' ( A 0 - V 0  �9 V0)=  O, (x, y)eO, (5.2) 

and the boundary conditions as shown in fig. 1. 
The advantage of introducing 0 is that in view of our hypotheses on the relative variations 

in q/and e~ we can apply standard numerical techniques to the solution of equation (5.2). 
Our computed approximation to 0 is denoted by 0', and satisfies 

A0'-V~b'-V0'  -- r4 (5.7) 

y = L ~ 

3DI.-~ 

~ = 1 

~ = 0 
x 

8=1, ~y = 0 

3D 3 

~D 2 

k~ =b 

8 = 0 
x 

x 
8=0, ~y = 0 x= L 

Figure 1. Orientation of boundary segments for two-dimensional problem. 
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for some error term r4; as previously, we assume that 0' satisfies the prescribed boundary 
conditions exactly. To compute an approximation ~', we use (5.1) and the boundary conditions 
to obtain 

~ x  

~'(x, y )=  1 - j ( y ) ~  e-~ y)dz (5.4a) 
J o 

=b+j(y)f  (54b) 
where 

j(y) = (1 -b )  e-~"r yldz. (5.5) 
o 

From (2.5, 5.4, 5.5), we obtain an expression for the approximation to the total electron 
current, which is given by 

J' = j(y)(O'y(O, y)-bO'y(L, y))dy/(1-b) .  (5.6) 
o 

For th.is computation scheme, we have the following estimate: 

/ ! t t Lemma 3: Suppose the quantities 0', Oy, 0~, Oy, Oyy are uniformly bounded for (x, y)e O, and 
j(y) uniformly bounded for ye[0 , /2 ] ;  then there exists a constant C, depending on D and the 
bounds for these quantities, such that 

1lr2112 ~ C [FIr4112 + [[r4[[1,z + IIr~ll~ + IIr~ll2,d �9 (5.7) 

Proof: We differentiate (5.4) with respect to x, to obtain 

~" (x, y) = - e-~'  (x.,)j (y) 0', (x, y) ; (5.8) 

rewriting (5.3) in the form 

(e -~ O'~)X + (e- q"0'y)y = e -~ r4 (5.9) 

and differentiating (5.4a) with respect to y, we obtain, using (5.9) and the boundary conditions 
for 0', 

~;(x, y ) = j , ( y )  e-O'(z'Y)O'y(z, y)dz +j(y) -o" , (e o,),.(z, y) dz 
0 

=L(y) e~~ y)dz+j(y) (-e-~'0;)x(z, y)dz 
o o 

f2 e -0"(~'') r 4 (z, y)dz + j  (y) 

- - L ( y )  e-O'(z"~~ z, Y)dz-j(y)e-~ x, Y) 
0 

+ j(y) f~ e-~ y)dz. 

Differentiating (5.5) with respect to y, we obtain similarly 

jy(y) = _ (j(y))2 e -~ rg(z, y)dz/(1 - b ) .  (5.1l) 
o 

From (5.8-5.10) we have 

I ~ '  t �9 ! (e ~)x(x, y) =j(y)O~,(x, y) (5.12) 
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and 

thus 

(e ~ ~'y)y(X, y) = -j(y) O'~y(x, y)-jy(y) 0" (x, y) 

0 t = y  

(5.13) 

r2(x, y) = - L ( y )  0"(x, y) 

(eO,(x,t) x + -~ io e-q"'~'t)(jr(t)O'r(z' t)+j(t)r4(z' t)dz)t:r (5.14) 

From the boundedness ofj(y) as a function of y, we infer from (5.11) 

fL' [Jy(Y)12dy<= IIr41[~ ; C (5.15) 
0 

performing the indicated differentiations in (5.14) and taking the L2 norm, using (5.13, 5.15), 
the boundedness of ~,', @'y, and the derivatives of 0', and the Schwarz inequality repeatedly, 
we obtain an estimate for 11/'2112 of the form 

Iir2112 < C [-Ilr4ll2+ IIr4ll]+ Ilr41l~,2], (5.16) 

for which (5.7) follows by the Sobolev inequality. This concludes the proof of lemma 3. ' 
We note that the term IIr~ 112 in (3.1) can be estimated by methods similar to those used for 

the one-dimensional problem in Section 4. Under suitable additional hypotheses, bounds for 
the second derivatives of ~' may be obtained from (5.12, 5.13). 

In general it will not be possible to perform the indicated integrals in (5.4, 5.5, 5.6) exactly. 
We assume that the additional error introduced in the approximation ~' can be represented by 
adding an error term r 5 = r 5 (x, y) to e -~' 0' r in the integrands of(5.4, 5.5). Under these conditions, 
lemma 3 remains valid if the additional terms IIrsl12+llrsl[1,2+ 11r5112,2+ IIrsIl~+ Iir5112,2+ 
IIr5]1~,2 are inserted in the brackets in (5.7). The method of proving lemma 3 is essentially 
unchanged. 

Finally, we note that uniform bounds for ~k-~k', if-if', p-p'  may be obtained from the 
bounds in the norm II' II ~,2 and the inequality [10] 

][" [[ < C ]log 61 ([[" [1~,2 +611"[[2,2) (5.17) 

which is valid for any function in H 2 (D) equal to zero on OD~ w ~D2. If we obtain convergence 
of order h e in the norm []" [1~,2, setting 6 ~ h e, we have uniform convergence of order he]log hi, 
since from (3.1) we are assured of the square integrability of the second derivatives of ~', ~', p'. 

6. Discussion and summary 

Although the above analysis is not sharp with respect to multiplicative constants, it may be of 
practical value in the construction of suitable computation schemes for this type of problem. 
This is particularly true of the one-dimensional analysis of Section 4, where sufficient conditions 
for attainment of the asymptotic convergence rate are obtained, and where the effects of in- 
exact solution of the discrete equations can be appraised. The difference scheme (4.6-4.9) does 
not require that the variations in r ~, p between mesh points be small, and allows for a finite 
number of"depletion layer" edges, where abrupt variations in the charge density w, as given by 
(4.11), may occur. This scheme can readily be generalized to the case of nonuniform mesh 
point spacing, with theorem 2 remaining valid. Hypothesis (e) of theorem 2 may provide an 
effective criterion for terminating the iterative solution of the discrete equations, when relatively 
slowly converging methods are used for their solution [6, 12]. 

In addition, equations (2.5, 4.10)provide an unambiguous expression for the computed 
value of the electron current. In the general case, one has b ~ 1, and the current is essentially 
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eva lua ted  at  the b o u n d a r y  OD1; for b ipo la r  or  field-effect devices in their  n o r m a l  ope ra t ing  
condi t ions ,  this is the emi t te r  or  source contact ,  respect ively.  

To the best  of our  knowledge,  the scheme (4.6~4.9) has no t  been employed  in an ac tua l  
computa t ion .  A s imilar  scheme, however ,  in which the averages  (0 , , - 1  + 4 0 , , + 0 m + 1 ) / 6  are  
rep laced  by  0m in (4.7) has been used, bo th  in one d imens ion  [14],  and  in two-d imens iona l  
models  of the insu la ted-ga te  field-effect t rans i s to r  [-7, 12]. In  this  device, the current  flow is 
essential ly one-d imens iona l ,  and  thus the analysis  of Sect ion 4 at least  relevant,  if 'not r igorous ly  
appl icable .  It is readi ly  shown that  theorem 2 remains  true for the numer ica l  scheme so obta ined .  
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